Energy Applications /rasei/ en The Filament Factory: How two specialized cells team up to build microscopic rock and drive carbon capture /rasei/2026/01/05/filament-factory-how-two-specialized-cells-team-build-microscopic-rock-and-drive-carbon <span>The Filament Factory: How two specialized cells team up to build microscopic rock and drive carbon capture</span> <span><span>Daniel Morton</span></span> <span><time datetime="2026-01-05T10:26:55-07:00" title="Monday, January 5, 2026 - 10:26">Mon, 01/05/2026 - 10:26</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/rasei/sites/default/files/styles/focal_image_wide/public/2026-01/2025_12_Cyanobacteria_Thumbnail.jpg?h=6377f7ce&amp;itok=KBFwixpV" width="1200" height="800" alt="images of cyanobacteria"> </div> </div> <div role="contentinfo" class="container ucb-article-categories" itemprop="about"> <span class="visually-hidden">Categories:</span> <div class="ucb-article-category-icon" aria-hidden="true"> <i class="fa-solid fa-folder-open"></i> </div> <a href="/rasei/taxonomy/term/177"> News </a> <a href="/rasei/taxonomy/term/170"> Publication Highlight </a> </div> <div role="contentinfo" class="container ucb-article-tags" itemprop="keywords"> <span class="visually-hidden">Tags:</span> <div class="ucb-article-tag-icon" aria-hidden="true"> <i class="fa-solid fa-tags"></i> </div> <a href="/rasei/taxonomy/term/282" hreflang="en">Bio-Catalysis</a> <a href="/rasei/taxonomy/term/135" hreflang="en">Cameron</a> <a href="/rasei/taxonomy/term/269" hreflang="en">Energy Applications</a> </div> <a href="/rasei/our-community">Daniel Morton</a> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-text" itemprop="articleBody"> <div><p class="lead"><em><span>In the tiny, beaded chain of the cyanobacterium Anabaena sp. ATCC 33047, two different cells, the photosynthetic factory worker and the nitrogen-fixing specialist, play distinct and powerful roles in creating solid minerals.&nbsp;</span></em></p><div class="feature-layout-callout feature-layout-callout-large"><div class="ucb-callout-content"><div class="ucb-box ucb-box-title-left ucb-box-alignment-none ucb-box-style-fill ucb-box-theme-lightgray"><div class="ucb-box-inner"><div class="ucb-box-title">Find out more</div><div class="ucb-box-content"><p><a class="ucb-link-button ucb-link-button-blue ucb-link-button-full ucb-link-button-large" href="https://www.nature.com/articles/s42003-025-09065-w" rel="nofollow"><span class="ucb-link-button-contents">Read the Article</span></a></p><p><a class="ucb-link-button ucb-link-button-blue ucb-link-button-full ucb-link-button-large" href="https://www.nature.com/articles/s42003-025-09065-w#Sec15" rel="nofollow"><span class="ucb-link-button-contents">Check out the Videos</span></a></p></div></div></div></div></div><p><span>A team led by Renewable And Sustainable Energy Institute (RASEI) Fellow </span><a href="/rasei/jeff-camerons-rasei-engagement" rel="nofollow"><span>Jeff Cameron</span></a><span> and Nature, Environment, Science &amp; Technology (NEST) Studio co-founder </span><a href="/nest/erin-espelie" rel="nofollow"><span>Erin Espelie</span></a><span>, used advanced high-resolution microscopy to capture the key moments; the factory worker leaks materials when stressed, and the specialist accelerates crystal growth through contact, proving that single-cell behaviors are a vital trigger for biomineralization. Understanding the cellular processes could inform large-scale applications, from oceanic buffering and soil improvement to mineral formation, and living building materials that sequester carbon.</span></p><p>A central enabling technology to lower pollution and reduce carbon emissions is developing clever ways to capture, and handle carbon dioxide. One avenue of investigation is to use processes already developed by Nature. There is significant research focused on using one of the Earth’s oldest and powerful processes: <strong>Microbiologically Induced Calcium Carbonate Precipitation, or MICP for short</strong>. Bacteria and algae through their normal life functions naturally create rock, specifically calcium carbonate, the main component of limestone. This process is a critical process in oceanic buffering and holds immense potential promise for green technologies. If we can understand, and harness this process, we could use such bacteria for a broad range of applications. We could create “living” cements for self-healing concrete, stabilize fragile soils, even enhance industrial carbon dioxide sequestration. However, to control this process we first need to understand the specific cellular blueprints that guide these microbial construction projects. Until now, those blueprints have been frustratingly fuzzy.</p></div> </div> </div> </div> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-text" itemprop="articleBody"> <div><p>To better understand the puzzle of biomineralization the team explored the cellular structure of the cyanobacteria Anabaena sp. ATCC 33047 (hereafter <em>Anabaena</em>). Think of this organism as a tiny <strong>“Filament Factory”</strong>, one that grows as a string of cells, essentially a beaded green chain (they show up as red in the images because of the microscopy technique), where labor is divided in specific jobs. The links in the chain are not identical, it contains two specialized cell types that perform distinct, but equally important tasks.</p><p>First, let’s consider the <strong>Vegetative Cells</strong>, which are like tireless <strong>“Photosynthetic Factory Workers”</strong>. These are the green, abundant cells with the primary job of harvesting solar energy to convert carbon dioxide into sugars (Photosynthesis). This process has long been proposed as the main cause for triggering rock formation through MICP, as it raises the local pH, making the environment more alkaline, which encourages calcium carbonate to precipitate.</p><p>The other kind of cells, which can be found scattered along the filament, are called <strong>Heterocysts</strong>. These are like <strong>“Nitrogen-Fixing Specialists”</strong>. These cells are slightly larger, more solidly built, and specialize in converting atmospheric nitrogen gas into a usable form for the entire filament. This requires an extremely lo-oxygen environment, distinguishing the heterocysts and giving them a significant influence over the cells surrounding chemical environment.</p><p>To understand the process in a stepwise fashion the team were able to treat the bacterial system with a specific nutrient cocktail that essentially “turned off” the generalized photosynthesis-driven precipitation and instead focus solely on the effects of these two specialized cells. By developing approaches to shutdown specific parts of the process the team could use advanced microscopy techniques to better pin-point the single-cell behaviors responsible for triggering the formation and growth of microscopic rock.</p><p>Unlocking this level of detail in the cellular workings of a cyanobacteria requires specialized tools. The researchers used a suites of powerful high-resolution techniques to interrogate the bacteria, including <strong>Quantitative Fluorescence Microscopy</strong> and <strong>Raman Microscopy</strong>, that enabled them to watch the action unfold. The ability to directly observe the single-cell processes was critical to determining how the “Filament Factory” uses two distinct mechanisms for biomineralization.</p><p>The first observation centers around the <strong>Vegetative Cells</strong>, or the “Photosynthetic Factory Workers”. While the cells are usually busy using solar energy to capture carbon dioxide the high-resolution microscopy captured what happens when these cells are under mechanical stress, such as when they are bent by other cells, or squashed against an existing mineral structure. The team were able to watch in real-time as this physical pressure caused the cells membrane to rupture. This breach of the membrane releases, or leaks, a key chemical, the sequestered inorganic carbon (bicarbonate) that the cell was holding inside. This rapid, localized surge of carbon creates excellent conditions for the formation of a new crystal at the leakage site. This reframes the start of the process. It is not just a passive gradual change in the environment that causes crystal growth, instead it can be caused by an active, stress-induced cell failure that is a trigger for calcite crystal nucleation.</p><p>The second observation concerns the actions of the <strong>Heterocyst Cells</strong>, or the “Nitrogen-Fixing Specialists”. Using the powerful techniques that enabled the researchers to peer into the inner workings of the cells the team were able to confirm that when a heterocyst cell came into direct contact with an existing calcite crystal “seed”, the crystal experienced rapid and dramatic growth. Crucially, this accelerated growth did not happen when a vegetative cell touched the crystal.</p><p>The team proposes that this dramatic crystal growth is connected to the function of Heterocyst Cell. Nitrogen fixation is a chemical transformation that consumes protons (H<sup>+</sup>). By pulling these protons out of the surrounding water, the heterocyst locally, and rapidly, increases the pH (alkalinity) of the microenvironment, which is amplified at the point of contact. This sudden shift in pH provides ideal conditions to effectively “glue” dissolved ions onto the existing crystal, resulting in rapid growth.</p><p>These findings describe how these two specialized cells have complementary roles. One is the nucleation trigger when stressed, and the other is the growth accelerator when in contact.</p><p>This detailed observation and analysis of the processes happening at the single-cell level shifts our understanding around the processes involved in biomineralization. Instead of thinking of microbial rock formation as a slow and uniform chemical reaction driven by large-scale phenomena like photosynthesis, this work illustrates mechanisms that are controlled and function-specific processes that are dictated by the precise cellular roles and localized behavior of individual cells.</p><p>The understanding building from these findings has the potential to inform a wide-range of applications. By isolating the “stress leak” trigger in vegetative cells and the growth accelerator from the heterocysts, researchers could design systems that intentionally apply mechanical stress, triggering crystal formation and accelerating the growth of carbon dioxide sequestering materials. This could have application in oceanic buffering and technologies for bio-concrete and soil rectification.</p><p><span>The development and application of advanced microscopic techniques has provided the bio-engineering world a new set of variable that they can use in bacterial engineering. By moving from a vague knowledge of “microbes make rock”, to a precise understanding of how the “Filament Factory” uses specialized cells to build, and grow, calcite crystals, the field is a step closer to harnessing this powerful natural approach for using carbon dioxide in a cleaner, more efficient way.</span></p></div> </div> </div> </div> </div> <div>January 2026</div> <h2> <div class="paragraph paragraph--type--ucb-related-articles-block paragraph--view-mode--default"> <div>Off</div> </div> </h2> <div>Traditional</div> <div>0</div> <div> <div class="imageMediaStyle large_image_style"> <img loading="lazy" src="/rasei/sites/default/files/styles/large_image_style/public/2026-01/2025_12_Cyanobacteria_Hero.jpg?itok=SjmuOVSp" width="1500" height="322" alt="images of cyanobacteria"> </div> </div> <div>On</div> <div>White</div> Mon, 05 Jan 2026 17:26:55 +0000 Daniel Morton 1470 at /rasei New window insulation blocks heat, but not your view /rasei/2025/12/11/new-window-insulation-blocks-heat-not-your-view <span>New window insulation blocks heat, but not your view</span> <span><span>Daniel Morton</span></span> <span><time datetime="2025-12-11T09:24:44-07:00" title="Thursday, December 11, 2025 - 09:24">Thu, 12/11/2025 - 09:24</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/rasei/sites/default/files/styles/focal_image_wide/public/2025-12/2025_12_Smalyukh_Window.png?h=6377f7ce&amp;itok=oN24-sYg" width="1200" height="800" alt="Picture of someones face through the window material described in the highlight"> </div> </div> <div role="contentinfo" class="container ucb-article-categories" itemprop="about"> <span class="visually-hidden">Categories:</span> <div class="ucb-article-category-icon" aria-hidden="true"> <i class="fa-solid fa-folder-open"></i> </div> <a href="/rasei/taxonomy/term/177"> News </a> <a href="/rasei/taxonomy/term/170"> Publication Highlight </a> </div> <div role="contentinfo" class="container ucb-article-tags" itemprop="keywords"> <span class="visually-hidden">Tags:</span> <div class="ucb-article-tag-icon" aria-hidden="true"> <i class="fa-solid fa-tags"></i> </div> <a href="/rasei/taxonomy/term/285" hreflang="en">Buildings</a> <a href="/rasei/taxonomy/term/269" hreflang="en">Energy Applications</a> <a href="/rasei/taxonomy/term/79" hreflang="en">Smalyukh</a> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-text" itemprop="articleBody"> <div><p class="lead">Physicists at Boulder, led by RASEI Fellow Ivan Smalyukh, have designed a new material for insulating windows that could improve the energy efficiency of buildings worldwide—and it works a bit like a high-tech version of Bubble Wrap.</p><div class="feature-layout-callout feature-layout-callout-large"><div class="ucb-callout-content"><div class="ucb-box ucb-box-title-left ucb-box-alignment-none ucb-box-style-fill ucb-box-theme-lightgray"><div class="ucb-box-inner"><div class="ucb-box-title">Find out more</div><div class="ucb-box-content"><p><a class="ucb-link-button ucb-link-button-gold ucb-link-button-large ucb-link-button-full" href="/today/2025/12/11/new-window-insulation-blocks-heat-not-your-view" rel="nofollow"><span class="ucb-link-button-contents"> Boulder Today Feature</span></a></p><p><a class="ucb-link-button ucb-link-button-blue ucb-link-button-full ucb-link-button-large" href="https://www.popsci.com/technology/bubble-wrap-insulate-windows/" rel="nofollow"><span class="ucb-link-button-contents">Popular Science Highlight</span></a></p><p><a class="ucb-link-button ucb-link-button-blue ucb-link-button-full ucb-link-button-large" href="https://www.sciencedaily.com/releases/2025/12/251213032611.htm" rel="nofollow"><span class="ucb-link-button-contents">Science Daily Highlight</span></a></p><p><a class="ucb-link-button ucb-link-button-blue ucb-link-button-full ucb-link-button-large" href="https://gizmodo.com/high-tech-bubble-wrap-lets-you-literally-hold-fire-in-your-palm-2000699692" rel="nofollow"><span class="ucb-link-button-contents">Gizmodo Highlight</span></a></p><p><a class="ucb-link-button ucb-link-button-blue ucb-link-button-full ucb-link-button-large" href="https://www.earth.com/news/bubble-wrap-window-coating-could-save-huge-amounts-of-energy-worldwide/" rel="nofollow"><span class="ucb-link-button-contents">Earth.com Highlight</span></a></p><p><a class="ucb-link-button ucb-link-button-blue ucb-link-button-full ucb-link-button-large" href="https://www.thebrighterside.news/post/new-transparent-window-material-could-cut-building-energy-loss-by-50/" rel="nofollow"><span class="ucb-link-button-contents">The Brighter Side Highlight</span></a></p><p><a class="ucb-link-button ucb-link-button-blue ucb-link-button-full ucb-link-button-large" href="https://colombiaone.com/2025/12/15/transparent-window-material-cuts-energy-loss/" rel="nofollow"><span class="ucb-link-button-contents">Columbia One Highlight</span></a></p><p>&nbsp;</p></div></div></div></div></div><p>The team’s material, called Mesoporous Optically Clear Heat Insulator, or MOCHI, comes in large slabs or thin sheets that can be applied to the inside of any window. So far, the team only makes the material in the lab, and it’s not available for consumers. But the researchers say MOCHI is long-lasting and is almost completely transparent.</p><p> Boulder Today have put together a feature article that has been picked up by a number of other news outlets. Check out the feature and the follow ups with the links to the right.&nbsp;</p></div> </div> </div> </div> </div> <div>December 2025</div> <h2> <div class="paragraph paragraph--type--ucb-related-articles-block paragraph--view-mode--default"> <div>Off</div> </div> </h2> <div>Traditional</div> <div>0</div> <div> <div class="imageMediaStyle large_image_style"> <img loading="lazy" src="/rasei/sites/default/files/styles/large_image_style/public/2025-12/2025_12_Smalyukh_Window_banner_Hero.png?itok=bn1pNQG1" width="1500" height="322" alt="Picture of researcher looking through the new material"> </div> </div> <div>On</div> <div>White</div> Thu, 11 Dec 2025 16:24:44 +0000 Daniel Morton 1468 at /rasei Agami Zero Breaks Through with Magnetic Hydrogen Advance /rasei/2025/12/03/agami-zero-breaks-through-magnetic-hydrogen-advance <span>Agami Zero Breaks Through with Magnetic Hydrogen Advance</span> <span><span>Daniel Morton</span></span> <span><time datetime="2025-12-03T15:50:11-07:00" title="Wednesday, December 3, 2025 - 15:50">Wed, 12/03/2025 - 15:50</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/rasei/sites/default/files/styles/focal_image_wide/public/2025-12/2025_09_Template_Thumbnail_0.png?h=c4e54fe5&amp;itok=7G-9aQzd" width="1200" height="800" alt="Picture of the Agami Zero Team"> </div> </div> <div role="contentinfo" class="container ucb-article-categories" itemprop="about"> <span class="visually-hidden">Categories:</span> <div class="ucb-article-category-icon" aria-hidden="true"> <i class="fa-solid fa-folder-open"></i> </div> <a href="/rasei/taxonomy/term/177"> News </a> </div> <div role="contentinfo" class="container ucb-article-tags" itemprop="keywords"> <span class="visually-hidden">Tags:</span> <div class="ucb-article-tag-icon" aria-hidden="true"> <i class="fa-solid fa-tags"></i> </div> <a href="/rasei/taxonomy/term/281" hreflang="en">Catalysis</a> <a href="/rasei/taxonomy/term/269" hreflang="en">Energy Applications</a> <a href="/rasei/taxonomy/term/286" hreflang="en">Hydrogen</a> <a href="/rasei/taxonomy/term/149" hreflang="en">Luca</a> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-text" itemprop="articleBody"> <div><p class="lead"><em>A startup team led by RASEI Fellow </em><a href="/rasei/oana-lucas-rasei-engagement" rel="nofollow"><em>Oana Luca</em></a><em>, called </em><a href="https://agamizero.com/" rel="nofollow"><em>Agami Zero</em></a><em>, has just secured seed funding after winning the </em><a href="/venturepartners/2025/10/27/internal-news/755000-awarded-university-colorado-innovators-advance-their-discoveries" data-entity-type="external" rel="nofollow"><em>2025 Lab Venture Challenge</em></a><em>. Their winning idea? A new way to produce hydrogen fuel more efficiently, a key mechanism for decarbonizing our energy economy.&nbsp;</em></p></div> </div> </div> </div> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-text" itemprop="articleBody"> <div><p>Hydrogen is an essential puzzle piece in removing carbon from our energy economy and reducing pollution, but it is not without its challenges. While the overarching goal is to electrify as much of the economy as possible (like swapping gas central heaters for heat pumps), there are some critical areas, including sectors such as long-haul shipping, aviation, and heavy industry (steel / cement production), that are extremely difficult to power with electricity alone. While there are many researchers that are innovating in this space, and exciting discoveries that could lead to future alternatives, Hydrogen, which is an energy-dense, zero-emission fuel, is one of our most promising solutions for decarbonization.</p><p>What color is my hydrogen? There is a whole rainbow of hydrogen classifications, with over 10 different colors in total. Each color is defined based on how the hydrogen is produced. While we are not going to take a deep dive into each class here, there are some great resources where you can learn more.</p><p>Currently, most hydrogen produced today is Gray Hydrogen. This means it is produced from fossil gas using a process called Steam-Methane Reforming (SMR). The SMR process is a significant contributor to industrial carbon emissions globally, (95% of hydrogen produced in the United States is from SMR), the role of fossil gas in this process means that gray hydrogen is actually a contributor to the pollution problem, not a solution.</p><p>Blue Hydrogen is a little bit better, but still not a sustainable solution. Blue Hydrogen is generated using the same processes as Gray Hydrogen, using fossil gas, but the carbon emissions are captured and then sequestered or used in other processes. The use of fossil gas as the feedstock, and the energy required to capture the carbon emissions, also means that this is not a sustainable solution for decarbonized energy.</p><p>The real goal is to produce Green Hydrogen. Green Hydrogen is produced using carbon-free renewable electricity (such as wind and solar). The process uses renewable energy to power an electrolyzer, which separates water into hydrogen and oxygen. Green Hydrogen production does not emit any carbon pollution, but there are still challenges associated with this process. This is the area where Agami Zero team are focused, using a clever application of fundamental physics, <strong>the Lorentz Force</strong>.</p><p><span>A key challenge with the Green Hydrogen process is one of efficiency. Standard electrolysis of water requires a lot of energy. Gas bubbles that form on the electrodes often create electrical resistance, which forces the system to work harder, reducing the overall efficiency. The innovation from Agami Zero is to introduce a technology originally invented, and proven, in space(!), something called <strong>magnetically enhanced electrolysis</strong> (MEE). In the electrolysis process, an electrical current is used to split the water molecules. When the electrical current passes through the water (which conducts the current), the movement of these charged particles (ions), near the electrode surfaces is affected by the presence of a magnetic field. The force exerted on the ions by the magnetic field is called the Lorentz Force. Researchers found that when a magnetic field is applied to the electrolysis cell, the bubbles forming at the electrode, the ones that cause an increase in the electrical resistance, detach from the electrodes much faster.</span></p></div> </div> </div> </div> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default 3"> <div class="ucb-article-row-subrow row"> <div class="ucb-article-text col-lg d-flex align-items-center" itemprop="articleBody"> <div><p>The movement of the ions at the surface of the electrode, caused by the magnetic field, trigger the bubbles to detach. Think of it like the magnetic field providing a subtle, but continuous, “nudge”, moving the bubbles, and clearing the way for the electric current. Through careful control and tuning of the magnetic field the Agami Zero team can considerably improve the overall efficiency of the process. This clever technique reduces the systems electrical resistance, enabling a higher rate of hydrogen generation for the same amount of power.</p><p><span>The team is comprised of Oana Luca, RASEI Fellow, Hunter Koltunski, chemistry graduate student and scientific lead and Jafar Makrani (Agami Zero) and Lyle Antieau (Agami Zero) who bring extensive business and industry expertise to the Agami Zero team. The collaboration also includes Prof. Rich Noble, member of National Academy of Inventors and experienced entrepreneur as a mentor and Prof. Ankur Gupta, a modeling expert who will be assisting in scaleup work.</span></p><p><span>“Early in May 2025, Jafar and Lyle reached out to discuss the idea of magnetohydrodynamic electrolysis (MHD) for hydrogen production.” Explains Luca. “Jafar and Lyle had put together a business case for why the MHD approach would be successful. After reading more about the Lorentz force and quite a few email exchanges among the various team members. I remember going to group meeting and asking Hunter what he thinks about magnetic effects in electrolysis reactions and he was immediately intrigued.” Within a week Hunter was in the lab building some apparatus called Halbach arrays, the effects of which were substantial, and the rest is history. The team came together quite organically. Rich Noble is a long-term collaborator and mentor for Oana, who had engaged in many field-effect-related discussions (and for quite a few years), and Ankur rounded out the team with his mass transport expertise and the needed modeling.</span></p><p>In October of 2025 Agami Zero competed in the <a href="/venturepartners/2025/10/27/internal-news/755000-awarded-university-colorado-innovators-advance-their-discoveries" rel="nofollow">2025 Lab Venture Challenge</a>. Since 2018 Boulder has hosted the <a href="/venturepartners/opportunities-and-events/lab-venture-challenge" rel="nofollow">Lab Venture Challenge</a>, which has now funded more than 115 innovative projects, resulting in 70 new deep-tech startup companies, leading to over $300M in follow-on financing raised by companies. Each year teams participate in an intensive application process that culminates in the LVC Community Showcase. This year eleven teams from Boulder, that brought together faculty, researchers, and graduate students, competed for a combined $755,000 in startup funding grants. The community showcases adopt a “Shark Tank” style format, where the teams pitch, in front of a live audience, their ideas and innovations to a panel of judges. This year Agami Zero were competing in the Physical Sciences category and were able to convince the judges panel that their approach using MEE to offer scalable and cost-effective hydrogen fuel for transportation, industry, and off-grid power, should win.</p><p><span>The success of Agami Zero, from an innovative idea to a winning pitch at the LVC, is more than an entrepreneurial accomplishment, it is a testament to how researchers can use scientific understanding to solve real world problems. By taking a fundamental concept such as the Lorentz Force and applying it to a bottleneck in hydrogen generation, Oana, Hunter, and the entire team now have the opportunity to make a measurable difference in how we generate green hydrogen. This seed funding gives them a real chance to explore this idea, and we look forward to watching how Agami Zero innovates in scaling up Green Hydrogen applications.</span></p></div> </div> <div class="ucb-article-content-media ucb-article-content-media-right col-lg"> <div> <div class="paragraph paragraph--type--media paragraph--view-mode--default"> <div> <div class="imageMediaStyle large_image_style"> <img loading="lazy" src="/rasei/sites/default/files/styles/large_image_style/public/2025-12/2025_12_MEE-01.png?itok=UA0dqxJY" width="1500" height="2000" alt="MEE Explainer"> </div> </div> </div> </div> </div> </div> </div> </div> </div> <div>December 2025</div> <h2> <div class="paragraph paragraph--type--ucb-related-articles-block paragraph--view-mode--default"> <div>Off</div> </div> </h2> <div>Traditional</div> <div>0</div> <div> <div class="imageMediaStyle large_image_style"> <img loading="lazy" src="/rasei/sites/default/files/styles/large_image_style/public/2025-12/2025_09_Template_Hero.png?itok=SfdJ2m3s" width="1500" height="323" alt="Picture of the Agami Zero Team"> </div> </div> <div>On</div> <div>White</div> Wed, 03 Dec 2025 22:50:11 +0000 Daniel Morton 1453 at /rasei Distinct Surface and Bulk Morphology Due to Solvent Additive Effects in PM6 Conjugated Polymer Films /rasei/2025/11/26/distinct-surface-and-bulk-morphology-due-solvent-additive-effects-pm6-conjugated-polymer <span>Distinct Surface and Bulk Morphology Due to Solvent Additive Effects in PM6 Conjugated Polymer Films</span> <span><span>Daniel Morton</span></span> <span><time datetime="2025-11-26T11:40:47-07:00" title="Wednesday, November 26, 2025 - 11:40">Wed, 11/26/2025 - 11:40</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/rasei/sites/default/files/styles/focal_image_wide/public/2025-12/2025_11_26_Macromolecules_Thumbnail.png?h=d95abdc4&amp;itok=srTuHPVC" width="1200" height="800" alt="TOC Graphic"> </div> </div> <div role="contentinfo" class="container ucb-article-categories" itemprop="about"> <span class="visually-hidden">Categories:</span> <div class="ucb-article-category-icon" aria-hidden="true"> <i class="fa-solid fa-folder-open"></i> </div> <a href="/rasei/taxonomy/term/43"> Publication </a> </div> <div role="contentinfo" class="container ucb-article-tags" itemprop="keywords"> <span class="visually-hidden">Tags:</span> <div class="ucb-article-tag-icon" aria-hidden="true"> <i class="fa-solid fa-tags"></i> </div> <a href="/rasei/taxonomy/term/269" hreflang="en">Energy Applications</a> <a href="/rasei/taxonomy/term/274" hreflang="en">Nanoscience and Advanced Materials</a> <a href="/rasei/taxonomy/term/289" hreflang="en">Polymers</a> <a href="/rasei/taxonomy/term/290" hreflang="en">Semiconductors</a> <a href="/rasei/taxonomy/term/111" hreflang="en">Toney</a> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-text" itemprop="articleBody"> </div> </div> </div> </div> <div>MACROMOLELES, 2025, ASAP</div> <script> window.location.href = `https://doi.org/10.1021/acs.macromol.5c01766`; </script> <h2> <div class="paragraph paragraph--type--ucb-related-articles-block paragraph--view-mode--default"> <div>Off</div> </div> </h2> <div>Traditional</div> <div>0</div> <div>On</div> <div>White</div> Wed, 26 Nov 2025 18:40:47 +0000 Daniel Morton 1461 at /rasei Effective bands and band-like electron transport in amorphous solids /rasei/2025/11/17/effective-bands-and-band-electron-transport-amorphous-solids <span>Effective bands and band-like electron transport in amorphous solids</span> <span><span>Daniel Morton</span></span> <span><time datetime="2025-11-17T11:42:23-07:00" title="Monday, November 17, 2025 - 11:42">Mon, 11/17/2025 - 11:42</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/rasei/sites/default/files/styles/focal_image_wide/public/2025-12/2025_11_17_NaturePhysics_Thumbnail.png?h=d95abdc4&amp;itok=uGkMqQ4K" width="1200" height="800" alt="TOC Graphic"> </div> </div> <div role="contentinfo" class="container ucb-article-categories" itemprop="about"> <span class="visually-hidden">Categories:</span> <div class="ucb-article-category-icon" aria-hidden="true"> <i class="fa-solid fa-folder-open"></i> </div> <a href="/rasei/taxonomy/term/43"> Publication </a> </div> <div role="contentinfo" class="container ucb-article-tags" itemprop="keywords"> <span class="visually-hidden">Tags:</span> <div class="ucb-article-tag-icon" aria-hidden="true"> <i class="fa-solid fa-tags"></i> </div> <a href="/rasei/taxonomy/term/269" hreflang="en">Energy Applications</a> <a href="/rasei/taxonomy/term/151" hreflang="en">Larsen</a> <a href="/rasei/taxonomy/term/274" hreflang="en">Nanoscience and Advanced Materials</a> <a href="/rasei/taxonomy/term/290" hreflang="en">Semiconductors</a> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-text" itemprop="articleBody"> </div> </div> </div> </div> <div>NATURE PHYSICS, 2025, ASAP</div> <script> window.location.href = `https://doi.org/10.1038/s41567-025-03099-x`; </script> <h2> <div class="paragraph paragraph--type--ucb-related-articles-block paragraph--view-mode--default"> <div>Off</div> </div> </h2> <div>Traditional</div> <div>0</div> <div>On</div> <div>White</div> Mon, 17 Nov 2025 18:42:23 +0000 Daniel Morton 1462 at /rasei Thermally Activated Circularly Polarized Photoluminescence in a 2D Hybrid Perovskite with Giant Spin Splitting /rasei/2025/11/14/thermally-activated-circularly-polarized-photoluminescence-2d-hybrid-perovskite-giant <span>Thermally Activated Circularly Polarized Photoluminescence in a 2D Hybrid Perovskite with Giant Spin Splitting</span> <span><span>Daniel Morton</span></span> <span><time datetime="2025-11-14T11:21:24-07:00" title="Friday, November 14, 2025 - 11:21">Fri, 11/14/2025 - 11:21</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/rasei/sites/default/files/styles/focal_image_wide/public/2025-12/2025_11_14_ADvFuncMat_Thumbnail.png?h=d95abdc4&amp;itok=EXIJivcE" width="1200" height="800" alt="TOC Graphic"> </div> </div> <div role="contentinfo" class="container ucb-article-categories" itemprop="about"> <span class="visually-hidden">Categories:</span> <div class="ucb-article-category-icon" aria-hidden="true"> <i class="fa-solid fa-folder-open"></i> </div> <a href="/rasei/taxonomy/term/43"> Publication </a> </div> <div role="contentinfo" class="container ucb-article-tags" itemprop="keywords"> <span class="visually-hidden">Tags:</span> <div class="ucb-article-tag-icon" aria-hidden="true"> <i class="fa-solid fa-tags"></i> </div> <a href="/rasei/taxonomy/term/320" hreflang="en">CHOISE</a> <a href="/rasei/taxonomy/term/269" hreflang="en">Energy Applications</a> <a href="/rasei/taxonomy/term/274" hreflang="en">Nanoscience and Advanced Materials</a> <a href="/rasei/taxonomy/term/287" hreflang="en">Perovskites</a> <a href="/rasei/taxonomy/term/81" hreflang="en">Reid</a> <a href="/rasei/taxonomy/term/290" hreflang="en">Semiconductors</a> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-text" itemprop="articleBody"> </div> </div> </div> </div> <div>ADVANCED FUNCTIONAL MATERIALS, 2025, e17358</div> <script> window.location.href = `https://doi.org/10.1002/adfm.202517358`; </script> <h2> <div class="paragraph paragraph--type--ucb-related-articles-block paragraph--view-mode--default"> <div>Off</div> </div> </h2> <div>Traditional</div> <div>0</div> <div>On</div> <div>White</div> Fri, 14 Nov 2025 18:21:24 +0000 Daniel Morton 1456 at /rasei Layer-by-layer epitaxial growth of perovskite heterostructures with tunable band offsets /rasei/2025/11/14/layer-layer-epitaxial-growth-perovskite-heterostructures-tunable-band-offsets <span>Layer-by-layer epitaxial growth of perovskite heterostructures with tunable band offsets</span> <span><span>Daniel Morton</span></span> <span><time datetime="2025-11-14T10:20:37-07:00" title="Friday, November 14, 2025 - 10:20">Fri, 11/14/2025 - 10:20</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/rasei/sites/default/files/styles/focal_image_wide/public/2025-11/2025_11_13_Science.png?h=d95abdc4&amp;itok=vT2-NWU1" width="1200" height="800" alt="TOC Graphic"> </div> </div> <div role="contentinfo" class="container ucb-article-categories" itemprop="about"> <span class="visually-hidden">Categories:</span> <div class="ucb-article-category-icon" aria-hidden="true"> <i class="fa-solid fa-folder-open"></i> </div> <a href="/rasei/taxonomy/term/43"> Publication </a> </div> <div role="contentinfo" class="container ucb-article-tags" itemprop="keywords"> <span class="visually-hidden">Tags:</span> <div class="ucb-article-tag-icon" aria-hidden="true"> <i class="fa-solid fa-tags"></i> </div> <a href="/rasei/taxonomy/term/51" hreflang="en">Barlow</a> <a href="/rasei/taxonomy/term/269" hreflang="en">Energy Applications</a> <a href="/rasei/taxonomy/term/266" hreflang="en">Energy Generation</a> <a href="/rasei/taxonomy/term/50" hreflang="en">Marder</a> <a href="/rasei/taxonomy/term/274" hreflang="en">Nanoscience and Advanced Materials</a> <a href="/rasei/taxonomy/term/287" hreflang="en">Perovskites</a> <a href="/rasei/taxonomy/term/273" hreflang="en">Solar Power</a> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-text" itemprop="articleBody"> </div> </div> </div> </div> <div>SCIENCE, 2025, 390, 6774, 716-721<br> November 2025</div> <script> window.location.href = `https://doi.org/10.1126/science.adx5685`; </script> <h2> <div class="paragraph paragraph--type--ucb-related-articles-block paragraph--view-mode--default"> <div>Off</div> </div> </h2> <div>Traditional</div> <div>0</div> <div>On</div> <div>White</div> Fri, 14 Nov 2025 17:20:37 +0000 Daniel Morton 1449 at /rasei The Reaches of Boulder Research /rasei/2025/11/10/reaches-cu-boulder-research <span>The Reaches of Boulder Research</span> <span><span>Daniel Morton</span></span> <span><time datetime="2025-11-10T11:45:19-07:00" title="Monday, November 10, 2025 - 11:45">Mon, 11/10/2025 - 11:45</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/rasei/sites/default/files/styles/focal_image_wide/public/2026-01/2026_01_ColoradanTuretsky_Thumbnail.png?h=6377f7ce&amp;itok=hYOezap3" width="1200" height="800" alt="Illustration of plastics transforming in fertilizer"> </div> </div> <div role="contentinfo" class="container ucb-article-categories" itemprop="about"> <span class="visually-hidden">Categories:</span> <div class="ucb-article-category-icon" aria-hidden="true"> <i class="fa-solid fa-folder-open"></i> </div> <a href="/rasei/taxonomy/term/177"> News </a> </div> <div role="contentinfo" class="container ucb-article-tags" itemprop="keywords"> <span class="visually-hidden">Tags:</span> <div class="ucb-article-tag-icon" aria-hidden="true"> <i class="fa-solid fa-tags"></i> </div> <a href="/rasei/taxonomy/term/284" hreflang="en">Circular Economy</a> <a href="/rasei/taxonomy/term/269" hreflang="en">Energy Applications</a> <a href="/rasei/taxonomy/term/289" hreflang="en">Polymers</a> <a href="/rasei/taxonomy/term/255" hreflang="en">Turetsky</a> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-text" itemprop="articleBody"> </div> </div> </div> </div> <div>November 2025</div> <script> window.location.href = `/coloradan/2025/11/10/reaches-cu-boulder-research`; </script> <h2> <div class="paragraph paragraph--type--ucb-related-articles-block paragraph--view-mode--default"> <div>Off</div> </div> </h2> <div>Traditional</div> <div>0</div> <div>On</div> <div>White</div> Mon, 10 Nov 2025 18:45:19 +0000 Daniel Morton 1472 at /rasei Predicting Trends in VOC Through Rapid, Multimodal Characterization of State-of-the-Art p-i-n Perovskite Devices /rasei/2025/11/07/predicting-trends-voc-through-rapid-multimodal-characterization-state-art-p-i-n <span>Predicting Trends in VOC Through Rapid, Multimodal Characterization of State-of-the-Art p-i-n Perovskite Devices</span> <span><span>Daniel Morton</span></span> <span><time datetime="2025-11-07T11:24:03-07:00" title="Friday, November 7, 2025 - 11:24">Fri, 11/07/2025 - 11:24</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/rasei/sites/default/files/styles/focal_image_wide/public/2025-12/2025_11_07_ACSEnergyLett_Thumbnail.png?h=d95abdc4&amp;itok=4bWRiF9D" width="1200" height="800" alt="TOC Graphic"> </div> </div> <div role="contentinfo" class="container ucb-article-categories" itemprop="about"> <span class="visually-hidden">Categories:</span> <div class="ucb-article-category-icon" aria-hidden="true"> <i class="fa-solid fa-folder-open"></i> </div> <a href="/rasei/taxonomy/term/43"> Publication </a> </div> <div role="contentinfo" class="container ucb-article-tags" itemprop="keywords"> <span class="visually-hidden">Tags:</span> <div class="ucb-article-tag-icon" aria-hidden="true"> <i class="fa-solid fa-tags"></i> </div> <a href="/rasei/taxonomy/term/144" hreflang="en">Berry</a> <a href="/rasei/taxonomy/term/269" hreflang="en">Energy Applications</a> <a href="/rasei/taxonomy/term/266" hreflang="en">Energy Generation</a> <a href="/rasei/taxonomy/term/274" hreflang="en">Nanoscience and Advanced Materials</a> <a href="/rasei/taxonomy/term/287" hreflang="en">Perovskites</a> <a href="/rasei/taxonomy/term/290" hreflang="en">Semiconductors</a> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-text" itemprop="articleBody"> </div> </div> </div> </div> <div>ACS ENERGY LETTERS, 2025, 10, 6014-6021</div> <script> window.location.href = `https://doi.org/10.1021/acsenergylett.5c02730`; </script> <h2> <div class="paragraph paragraph--type--ucb-related-articles-block paragraph--view-mode--default"> <div>Off</div> </div> </h2> <div>Traditional</div> <div>0</div> <div>On</div> <div>White</div> Fri, 07 Nov 2025 18:24:03 +0000 Daniel Morton 1457 at /rasei Surface Passivation for Halide Optoelectronics: Comparing Optimization and Reactivity of Amino-Silanes with Formamidinium /rasei/2025/11/07/surface-passivation-halide-optoelectronics-comparing-optimization-and-reactivity-amino <span>Surface Passivation for Halide Optoelectronics: Comparing Optimization and Reactivity of Amino-Silanes with Formamidinium</span> <span><span>Daniel Morton</span></span> <span><time datetime="2025-11-07T11:17:31-07:00" title="Friday, November 7, 2025 - 11:17">Fri, 11/07/2025 - 11:17</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/rasei/sites/default/files/styles/focal_image_wide/public/2025-12/2025_11_07_JACS_Thumbnail.png?h=d95abdc4&amp;itok=04QH0f-r" width="1200" height="800" alt="TOC Graphic"> </div> </div> <div role="contentinfo" class="container ucb-article-categories" itemprop="about"> <span class="visually-hidden">Categories:</span> <div class="ucb-article-category-icon" aria-hidden="true"> <i class="fa-solid fa-folder-open"></i> </div> <a href="/rasei/taxonomy/term/43"> Publication </a> </div> <div role="contentinfo" class="container ucb-article-tags" itemprop="keywords"> <span class="visually-hidden">Tags:</span> <div class="ucb-article-tag-icon" aria-hidden="true"> <i class="fa-solid fa-tags"></i> </div> <a href="/rasei/taxonomy/term/51" hreflang="en">Barlow</a> <a href="/rasei/taxonomy/term/269" hreflang="en">Energy Applications</a> <a href="/rasei/taxonomy/term/266" hreflang="en">Energy Generation</a> <a href="/rasei/taxonomy/term/50" hreflang="en">Marder</a> <a href="/rasei/taxonomy/term/274" hreflang="en">Nanoscience and Advanced Materials</a> <a href="/rasei/taxonomy/term/287" hreflang="en">Perovskites</a> <a href="/rasei/taxonomy/term/273" hreflang="en">Solar Power</a> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-text" itemprop="articleBody"> </div> </div> </div> </div> <div>JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2025, 147, 46, 42918-42925</div> <script> window.location.href = `https://doi.org/10.1021/jacs.5c15574`; </script> <h2> <div class="paragraph paragraph--type--ucb-related-articles-block paragraph--view-mode--default"> <div>Off</div> </div> </h2> <div>Traditional</div> <div>0</div> <div>On</div> <div>White</div> Fri, 07 Nov 2025 18:17:31 +0000 Daniel Morton 1455 at /rasei